Mega Drive SGDK Megapong

In this tutorial series you will learn how to make a simple single-player Pong-like game for the Sega Mega Drive using SGDK! If you just want to see the full source code, you can get it from Github.

Megapong 3 - Importing Resources


Update: I added some details to the explanation of planes to avoid confusion in the future. Thanks to Diego for the suggestion!

Welcome back! Last time we set up our development environment to make things easier for us. This time things will get a bit more exciting, as we’ll import a graphic and use it to draw the background for our game! We have a lot ahead of us, so let’s rock. You can either use the Hello World project from part 1, or create a new blank one. This one will become our game, so remember where you put it…

Compiling Resource Files

Resource files are any type of media file that you’d like to use in your game. Images for sprites and backgrounds, audio files for effects and music… all the good stuff. However, before the Mega Drive can deal with our files, we’ll have to compile them into a format it can understand. Luckily SGDK will once again do all the heavy lifting for us!

First of all we need something to actually compile. Download the archive for this part of the tutorial here. Inside you’ll find an image file called bgtile.png. We’ll need that in a second, so put it somewhere within reach. For reference, this is what it looks like (scaled up 4x so you can see it better:)

images/bgtilepreview.png

Now open up your project folder. Inside you will find a subfolder called res. This is where we’ll put all our resources the project needs. Let’s be a bit more organized though! Open up the res folder and create a new subfolder within it. Name it tiles. Now put bgtile.png inside of it! It always pays to be organized, so it’s a good habit to get into.

Alright, now we have our file inside the project folder. However, we still need to tell SGDK what to actually do with it. So take another look inside your res folder. See that file called resources.res? Open that up in VSCode or any other text editor, since it’s basically just a text file with a fancy extension. We will use this file to tell SGDK which resources we want to use, and how we want to use them. Don’t worry, it’s simple!

As you can see the file is empty. Let’s change that! Copy the following line into it:

IMAGE   bgtile    "tiles/bgtile.png"  0

Now save the file. So…what does this mean? Let’s look at it step by step.
IMAGE: This tells SGDK that we want to create a resource of type IMAGE. There are other types (like SPRITE, BITMAP…) but for our purposes, IMAGE is the best choice.
bgtile: This is the name we will use to refer to our resource inside the code. It doesn’t have to match the file name, but I’d recommend it since things could get confusing otherwise.
tiles/bgtile.png: This is the location of the resource we want to import (relative to the project folder).
0: This tells the resource compiler what compression to use. Since our game will hardly tax the Mega Drive hardware we’ll set it to 0 for now, which means no compression.

Since the tile is our only resource for now, you can close resources.res. Now compile your project, which will automatically call the resource compiler. You won’t notice anything in the game, but take a look in your res folder again: You should now see a new file called resources.h. You don’t need to touch it, this is just the header file that SGDK will use to find the resource we just compiled!

Note: It’s important to always import this file at the top of your main.c file. If you’re using the blank project template you should be fine; otherwise just add #include <resources.h> to the very top of your file!

Putting The Tile On Screen

Now that we have our tile image in the proper format, we’ll put it on screen. There are two steps in order to achieve this: First we’ll load the tile, then we display it. Which is kind of obvious, I guess. Let’s just do it first, then I’ll explain some of the theory behind it.

Put the following line of code at the beginning of your main function in main.c:

VDP_loadTileSet(bgtile.tileset,1,DMA);

The function VDP_loadTileSet does what it says: It loads a tileset. Remember that we imported our file as an IMAGE? A resource of type IMAGE contains three properties: tileset,palette and map. Since we need a tileset, that’s the property we’re referencing. The name bgtile is the one we set in resource.res. If you used a different one, you’ll have to use it here as well! Ignore the 1 and DMA for now.

Okay, with the tile loaded, let’s throw it on the screen. This line of code makes that happen, so put it after the previous one:

VDP_setTileMapXY(PLAN_B,1,2,2);

Now compile your game and if everything went well, you should have a tile on the screen! …even though the color seems off?

images/offtile.png

We’ll take care of that soon, but first some explanations!

Theory

Planes

The Mega Drive uses planes to display graphics. When we’re working with tiles, you have two planes to work with: Plane A and Plane B. In simplified terms you can think of them as layers that determine at what depth your tiles are drawn. For example, Plane A is drawn above Plane B, so you would use that one for foreground tiles, like the ground your character walks on, for example. Plane B is drawn behind Plane A (just imagine the B standing for Background), so that’s where you’d draw a sky or something along those lines. (The priority system deciding the draw order is actually a bit more complicated than that and can easily be overridden, but for this tutorial you can stick to the layer analogy.) Whenever you place a tile on the screen you have to tell SGDK what plane to draw it on.

Tiles

One MD tile is always 8x8 pixels big. Because this size is fixed, tile coordinates in SGDK are not given in pixels, but tiles. Meaning: If we put a tile at position (1,1) the tile will be placed at pixel-position (8,8). If we add a tile at (2,1), this new tile we appear right next to the first one, at pixel-position (16,8). It’s very simple and useful, but it’s important to keep it in mind, as other things within SGDK actually use pixels as a measure.

VRAM

Finally, let’s quickly talk about VRAM. This is where the Mega Drive stores all the graphics needed for the game. For now you can basically imagine it as a stack of tiles. Whenever you load tiles using VDP_loadTileSet, SGDK puts that tile onto the VRAM stack. In order to access the tile we want, we have to remember where it was put. This is done using a simple integer: The first tile to be loaded is tile 1, the second tile is 2 and so on.

With all this theory, let’s see if you can figure out how we just got our tile on the screen! Here is the signature of VDP_setTileMapXY. Take a look at the parameters and try to figure out what we did:

void VDP_setTileMapXY(VDPPlan plan, u16 tile, u16 x, u16 y);

When you know the theory behind it it’s quite simple, but here’s a step-by-step explanation for reference! VDPPlan: This is the plane we want to draw our tile on. We picked PLAN_B, but we could’ve also used PLAN_A.
tile: This tells the function what tile to use, or in other words: This tells the function where in VRAM our desired tile is located. Since we’ve only loaded one tile, it’s at position 1.
x: This is the x-coordinate (in tiles!) where we want to put our tile. We chose 2, which would be 16 in pixels.
y: This is the 25th letter of the alphabet, and also the y-coordinate of where we want to put our tile.

Phew! That was a lot to take in, but we got to put a tile on the screen so it was worth it. One final note though: Remember the 1 I told you to ignore in VDP_loadTileSet(bgtile.tileset,1,DMA);? Well, this 1 actually told SGDK where to put the tile in VRAM. We could have loaded it onto position 2 or 9 or whatever, but then we’d also need to change the tile parameter in VDP_setTileMapXY. Also we’d have created a gap in the VRAM which you usually don’t want, as it’s confusing. It’s usually best to pile on the tiles one after the other.

As for the DMA, we’ll take a look at that in another tutorial.

And that finally wraps it up for this part! We’re slowly getting somewhere. In the next installment we’ll play around with tiles some more and will also fix the color. Thanks for reading and until next time!

If you have any questions, comments or criticism, post them in the comments below or reach out to me on Twitter @ohsat_games! Special thanks to Stephane Dallongeville for creating SGDK and everyone in the SGDK Discord for their help and keeping the dream alive!

Download the source code

All patrons on Patreon get the complete source code for this tutorial, as well as other perks such as early access! Become a Patron!
Just Want to Buy Me a Coffee?

Check out the rest of this tutorial series!

  • Megapong 1 - Hello Mega Drive World!
  • Megapong 2 - Setting Up The Environment
  • Megapong 3 - Importing Resources
  • Megapong 4 - Palettes
  • Megapong 5 - Sprites
  • Megapong 6 - Input and Paddles
  • Megapong 7 - Collisions
  • Megapong 8 - Score and HUD
  • Megapong 9 - Game Over
  • Megapong BONUS - Flashing!
  • Get Words in Your Inbox!

    Be oldschool and sign up for my newsletter to occasionally get updates and ramblings! Just enter your email address, prove you're not part of Skynet and you're good to go!



    I will not send you spam or sell/give your email address to someone else.  You can of course unsubscribe at any time. By clicking the subscribe button above, you confirm that you have read and agreed to our privacy policy.

    By using the Disqus service you confirm that you have read and agreed to the privacy policy.

    comments powered by Disqus

    Make a Space Shooter for the Mega Drive!

    February 24, 2020
    Mega Drive Ramblings

    Patreon Revamps

    January 28, 2020
    Mega Drive Ramblings

    New SGDK Tutorial: Megarunner!

    November 4, 2019
    Mega Drive Ramblings